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Featured Application: This article is related to passive radars using public broadcast signals in
the VHF band.

Abstract: This article proposes the design of a dual-band coupled-fed dipole antenna for passive
coherent location (PCL) systems in the very high frequency (VHF) band. The proposed indirect
coupled feed mechanism, which is often employed in microstrip patch antennas, is first applied to
VHF band dipole elements for dual-band matching. To confirm the effectiveness of the proposed
design, we fabricate the coupled-fed dipole element and measure antenna characteristics, such as
the voltage standing wave ratio (VSWR) and the antenna gain. The proposed antenna element is
then applied to an eight-element circular array to form the reference and surveillance beams for PCL
systems. Finally, the target location is estimated by constructing amplitude-range doppler (ARD)
maps for one frequency modulation (FM) and two terrain digital multimedia broadcasting (T-DMB)
illuminators in the Seoul-Gyunggi urban area. The results confirm that the proposed element is
suitable for dual-band PCL systems in the VHF band compared to a conventional dipole antenna.
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1. Introduction

In recent years, there has been ongoing development of aircraft with low-probability-of-intercept
(LPI) capabilities, which are difficult to track using conventional radar systems. To counter these
technologies, passive coherent location (PCL) radars using commercial low-frequency broadcast
signals, such as frequency modulation (FM) radio [1,2], digital TV [3–6], analog TV [7], satellites [8,9],
and mobile communications [10], have been studied extensively. In particular, PCL radars using
low-frequency bands, including the very high frequency (VHF) band of FM broadband signals, can
effectively counter long-range targets with radar absorbing material (RAM) or radar absorbing structure
(RAS). In addition, PCL radars can dramatically reduce system hardware costs, effectively conceal
the viewing position, and precisely estimate the target location with multi-static receivers, by using
external illuminating sources often referred to as “illuminators of opportunity” [11]. In general, an
appropriate number of illuminators is required to precisely pinpoint targets in the multi-static receiver
PCL system [11]. However, as FM stations cannot cover all regions, additional commercial stations
can also be utilized, such as terrain digital multimedia broadcasting (T-DMB, 174~216 MHz), which is
similar to European digital audio broadcasting (DAB) communications. In order to extend PCL system
performance from FM to T-DMB bands, it is necessary to improve individual antenna characteristics
for both the FM band and the T-DMB band. Achieving this multi-band performance at low frequencies
has been considered technically challenging.
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In this paper, we propose a novel design of an array antenna element that can achieve
multi-frequency band operation by applying a coupled-fed technique to a dipole antenna.
This coupled-fed technique, often used for broadband matching characteristics of microstrip patch
antennas [12–14], is first applied to the design of the multi-band dipole antenna for PCL systems.
The antenna element comprises an internal dipole and an external coupled-fed dipole. These internal
and external dipoles are tightly attached to the housing structure, which includes the circuit board of
a balun. Using the coupled-fed structure, the two resonances are appropriately controlled to achieve
FM and T-DMB dual-band matching characteristics. To confirm the effectiveness of the proposed
design, we fabricate the coupled-fed dipole element and measure antenna characteristics, such as the
voltage standing wave ratio (VSWR) and the antenna gain. The proposed antenna element is then
applied to an eight-element circular array to form the reference and surveillance beams in the T-DMB
band. Finally, the target location is estimated by constructing amplitude-range doppler (ARD) maps
for one FM and two T-DMB illuminators in the Seoul-Gyunggi urban area.

2. Multi-Static Receiver PCL System

Figure 1 shows elliptical trajectories for location estimation using the multi-static PCL system
when three illuminators with one receiver are used for a single target. In Figure 1, the distance from
the illuminator to the target is R1, while the distance from the target to the receiver is R2. The elliptical
trajectory then comprises R1 + R2, indicating the potential location of the target. If multiple ellipses are
created by two or more illuminators, the point at which they intersect is the target’s possible location.
However, there exist “Ghost” points at the intersections that are not the correct location, and thus at
least three illuminators are needed to accurately estimate the target position in the multi-static PCL
system [11].
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colored in yellow is the region of potential coverage by the PCL system where all three FM station 
signals can be used. Note that the south area of Seoul-Gyunggi cannot be covered by FM stations alone. 

Figure 1. Elliptic trajectories corresponding to the multi-static passive coherent location (PCL) system
(3 illuminators, 1 target, and 1 receiver).

Figure 2 illustrates the FM and T-DMB broadcast stations in the Seoul-Gyunggi urban area and the
potential coverage region for the multi-static PCL system when those stations are used as illuminators.
There are two FM stations, sixteen T-DMB stations, and two stations transmitting both FM and T-DMB.
Assuming a maximum reception distance of about 100 km for typical FM and DMB broadcasts [11,15],
the black, green, and purple circles represent the radius of 100 km within which the PCL system can
estimate the target position using those FM stations. The overlapping area colored in yellow is the
region of potential coverage by the PCL system where all three FM station signals can be used. Note
that the south area of Seoul-Gyunggi cannot be covered by FM stations alone. If additional south
T-DMB broadcast stations are added to the multi-static PCL system in this outer area, the PCL system’s
coverage can be extended to the entire urban area of Seoul-Gyunggi.
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Figure 2. Frequency modulation (FM) and terrain digital multimedia broadcasting (T-DMB) broadcast
stations with potential coverage area in the Seoul-Gyunggi urban area.

3. Design of the Dual-Band Coupled-Fed Dipole Antenna

Figure 3 shows the proposed dual-band dipole antenna with an electromagnetically coupled-fed
structure. The antenna comprises internal and external dipoles with lengths Hout and Hin respectively,
of which the values independently determine each resonance frequency. The internal dipole is fed
directly by the circuit board with the balun, and the external and internal dipoles are electromagnetically
coupled to achieve the additional T-DMB band matching characteristics. This coupled-fed mechanism,
which has been employed in various broadband microstrip patch antennas [12–14], is first applied to
the design of dual-band dipole antennas for the VHF frequency band. The coupled-fed mechanism
used for the dipole element can achieve the dual-band matching characteristics, which can improve
the illuminator of opportunity for PCL systems. The radius of the internal and external dipole
radiators is denoted by Rin and Rout, respectively. The separation gap between the internal and external
dipoles is Sd1. The optimal design parameters of the proposed antenna were derived using the FEKO
electromagnetic simulator [16] in conjunction with a genetic algorithm [17], and they are listed in
Table 1. Photographs of the proposed coupled-fed dipole antenna and the circuit board with the
embedded balun are presented in Figure 3b. The two ports of the internal dipole inside the external
dipole are firmly attached to the housing by screw-type connectors.

Table 1. Design parameters of the proposed antenna.

Parameters Values

Hout 460 mm

Hin 670 mm

Rout 62.5 mm

Rin 15 mm

Sd1 47.5 mm

Sd2 1.6 mm
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Figure 3. Geometry of the proposed antenna; (a) designed structure; (b) photographs of the
fabricated antenna.

The fabricated antenna was measured at an outdoor test site to investigate the radiation
characteristics. Figure 4a shows the antenna under testing. Figure 4b is the outdoor test site,
where the test antenna is on the left and the reference antenna is on the right. The distance between the
test and reference antennas is 10 m.

Figure 5 shows the VSWR of the proposed coupled-fed dipole antenna and the conventional thin
dipole, where the solid and dashed lines represent the measured and simulated results, respectively.
In the VSWR simulation, the balun is also included to achieve more accurate results. The FM and
T-DMB regions are displayed in gray. There is an additional resonance by the external radiator in
the second gray T-DMB region, as shown in Figure 5b. The proposed antenna shows good matching
characteristics in the FM and T-DMB bands, ranging from 88 to 217 MHz (VSWR < 2.5).
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Figure 6 shows the simulated bore-sight gains compared to the measured data. The results of the
proposed antenna are 2 dBi and 2.9 dBi at 100 MHz and 200 MHz, while the results of the conventional
thin dipole antenna are 0.8 dBi and −7 dBi. The 3-dB gain bandwidth ranges from 83 to 250 MHz.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 10 
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4. Location Estimation in the Seoul-Gyunggi Urban Area

To verify beamforming performance, the proposed coupled-fed dipole element is applied to form
an eight-element uniform circular array (UCA), as shown in Figure 7. An array radius of 0.5λ from
the center to the antenna element is used, and the array is located at a height of 8 m. The detailed
parameters for the array are listed in Table 2. The PCL system typically uses the correlation between
the reference and surveillance channels to detect the target. The reference channel is achieved by
steering the beam to the base station to pick up the commercial broadcast signals. The surveillance
channel is obtained by generating a deep null towards the base station in the radiation pattern to
collect echo signals reflected from targets. It follows that properly steered beam and null patterns are
critical for PCL system performance.
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Table 2. Parameters for array configuration.

Parameters Values

Number of array 8

Array type Uniform circular array

Array radius (R) 0.5λ

Mast height (Hm) 8 m

Reference beam Forming

Surveillance beam Nulling

Figure 8 illustrates the reference and surveillance radiation patterns at a T-DMB center frequency
of 200 MHz. By using the active element pattern (AEP) of each element of the array, the directional and
nulling patterns can be obtained. The least-mean-square (LMS) algorithm is used to optimize the feed
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weight for the required steering, which requires a narrow half-power beamwidth (HPBW) and a deep
null depth. The average null depth of the surveillance beam is −37.4 dB, and the average peak to side
lobe ratio (PSLR) of the reference beam is 18.6 dB.
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Equations (1) and (2) are used to derive the cross-correlation in the signals between the reference
channel and the surveillance channel [1,5,8,18,19]. Since the delay and Doppler frequency of the signal
are related to the target’s location and velocity, respectively, the ARD map of the target can be driven
from the equations.

χ(t, fd) =
∞∫
−∞

xr(t) · ys(t) · dt

χ : Cross correlation
xr(t) : Reference channel signal
ys(t) : Surveillance channel signal

(1)

ys(t) = xr(t− τ)∗e j2π fdt

τ : Signal delay
fd: Doppler frequency

(2)

Figure 9 shows the location estimation of the PCL system with the proposed antenna array
element. As shown in Figure 9a, the target location is estimated from three elliptical trajectories from
one FM and two T-DMB illuminators, which are located in Anseong, Gwanaksan and Gwanggyosan.
The symbols, ‘×’, ‘∆’, and ‘o’ represent the target, the illuminator, and the PCL system, respectively.
The distances from the PCL system to the three illuminators are 26.2 km (Ref.1 in Figure 9a), 38.1 km
(Ref.2 in Figure 9a) and 28.2 km (Ref.3 in Figure 9a). The blue elliptical trajectory is formed by tracking
the position where the sum of two distances (from the PCL system to the target and from the PCL
system to the FM station at Ref.2 in Figure 9a) are the same. Similarly, the blue and green elliptical
trajectories are formed by the T-DMB stations at Ref.1 and Ref.3 in Figure 9a, respectively. The location
where the three elliptical trajectories intersect is supposed as the correct position of the target when
three illuminators are used for a single target in the multi-static PCL system. The three ARD maps
with one FM and two T-DMB illuminators are shown in Figure 9b. The maximum cross-correlations in
the range axis of the ARD map are located at 102.4 km, 89.9 km, and 96.2 km.
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Figure 9. Location estimation for the target with the proposed antenna array element: (a) location map
for three illuminators, the target, and the PCL system; (b) ARD maps from each illuminator.

5. Conclusions

The proposed dual-band antenna for PCL systems, comprising internal and external dipoles, can
derive the multi-frequency matching characteristics by using an electromagnetically coupled feed
mechanism. The simulated VSWR was less than 2.5 from 88 to 217 MHz, and the 3-dB gain bandwidth
ranged from 83 to 250 MHz in the boresight direction. The proposed dipole antenna element was
extended to an eight-element UCA to form the reference and surveillance beams in the T-DMB and FM
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bands. The resulting multi-band performance is suitable for PCL systems by estimating the target
location from ARD maps in the Seoul-Gyunggi urban area.
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